Definition 12.3.4.
The Fibonacci Number: \(F_N\text{,}\) for \(N \ge 0\text{.}\)
\begin{align}
F_0 \amp= 0,\tag{12.3.1}\\
F_1 \amp= 1,\tag{12.3.2}\\
F_N \amp= F_{N-1} + F_{N-2}\tag{12.3.3}
\end{align}
main(…)
method tests both on the integer range [1, 10]. Both produce the correct value of 55.// Sums.java
public class Sums {
// Iterative solution to sum a sequence of integers
public static int iterativeSum(int begin, int end) {
int sum = 0; // Init accumulator variable
for (int i=begin; i<=end; i++) { // Generate all integers
sum += i; // Accumulate
}
return sum; // Return result
}
// Recursive solution to sum a sequence of integers
public static int recursiveSum(int begin, int end) {
// Base case when begin > end.
if (begin > end) {
return 0; // Sum is 0
// Recursive case
} else {
// Total sum is current number plus remaining sum
return begin + recursiveSum(begin+1, end);
}
}
// Test
public static void main(String[] args) {
System.out.println( "Iterative sum: " + iterativeSum( 1, 10) );
System.out.println( "Recursive sum: " + recursiveSum( 1, 10) );
}
}
Sums.java
javac Sums.java java Sums Iterative sum: 55 Recursive sum: 55
iterativeSum(…)
method uses the obvious approach of generating the integers to sum with a for-statement. The sum
variable is initialized to 0 and updated each time through the loop before returning the final result after the loop completes all iterations.recursiveSum(…)
method reformulates the solution technique using a recursive approach. It recasts the solution description as return the first number in the sequence plus the sum of the remaining numbers in the sequence. The base case terminates the recursion when the first parameter, begin
, is greater than the second parameter, end
, returning a value of 0. The result computed with recursiveSum(…)
is the same as iterativeSum(…)
when the same initial parameter value is provided.main(…)
method tests both methods on an arbitrary array of doubles. Both produce the correct result of 9.8.// Max.java
public class Max {
public static double iterativeMax(double[] arr) {
// Assume max is first element
double max = arr[0];
// Check if any another value is better
for (int i=1; i<arr.length; i++) {
if (arr[i] > max) max = arr[i];
}
// Return max value
return max;
}
public static double recursiveMax(double[] arr) {
// Call method overload starting a index 0
return recursiveMax(arr, 0);
}
public static double recursiveMax(double[] arr, int idx) {
// Base case when only 1 item left in array.
if (idx == arr.length - 1) {
return arr[idx];
// Recursive case
} else {
// Compute max of remaining part of array
double max = recursiveMax(arr, idx+1);
// Compare item at idx with max and return greatest
if (arr[idx] > max) {
return arr[idx];
} else {
return max;
}
}
}
// Test
public static void main(String[] args) {
double[] arr = {2.1, 6.2, 5.9, 3.7, 9.8, 8.0};
System.out.println( iterativeMax(arr) );
System.out.println( recursiveMax(arr) );
}
}
Max.java
iterativeMax(…)
method starts by temporarily initializing the max
variable to the first value in the array. A loop is used to compare this value to the remaining array values. If a better value is found, exceeding the current maximum, the max
variable value is updated. The final value of max
is returned as the overall maximum of the array.recursiveMax(…)
method with two implementations. The first overload takes only the double array as a parameter. This is a helper method, which is not recursive. It serves only to help us invoke the second overload, which is a recursive method. This second implementation takes the double array as well as the starting index (idx
) in the array from which the maximum should be calculated in the remaining elements. The second overload starts by checking for a base case, which occurs when the index from which to start is the last index of the array. The maximum value of one remaining array element is that array element value, so this value is returned immediately. If idx
is not the last index, the method is invoked recursively with the double array and a starting index of idx+1
, which computes the the maximum value of the remaining elements in the array, excluding the first. The value returned from this recursive invocation is compared to the element at idx
and the maximum of the two is returned. The main(…)
method tests both methods on an arbitrary array of doubles. Both produce the correct result of 9.8.recursiveMax(…)
to recursiveSum(…)
and note the similarity in the two implementations. In both cases the computation is performed on a smaller version of the problem. The smaller version computes an intermediate result which is used to compute the solution to a larger version of the problem.left(…)
method prints "left" and the right(…)
method prints "right." Neither the left(…)
nor the right(…)
methods are recursive by themselves. But, because left(…)
invokes right(…)
and right(…)
invokes left(…)
, the program is indirectly recursive. Both methods implement a base case that prints "arrived" and stops the recursion when the step count N
reaches 0.// Walk.java
public class Walk {
// A journey of a thousand miles begins with a single step.
public static void main(String[] args) {
left(10); // Take the first step
}
// Left foot
public static void left(int N) {
if (N <= 0) {
System.out.println("arrived");
} else {
System.out.println("left");
right(N-1);
}
}
// Right foot
public static void right(int N) {
if (N <= 0) {
System.out.println("arrived");
} else {
System.out.println("right");
left(N-1);
}
}
}
Walk.java
javac Walk.java java Walk left right left right left right left right left right arrived
void
method may simply be a scenario in which program control causes the method to exit because no recursive case condition is satisfied.\(F_0\) | \(F_1\) | \(F_2\) | \(F_3\) | \(F_4\) | \(F_5\) | \(F_6\) | \(F_7\) | \(F_8\) | \(F_9\) | \(F_{10}\) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |
// Fibonacci.java
public class Fibonacci {
public static long count = 0L; // Counter
public static long start = 0L; // Start time
public static long recursiveFibonacci( int N ) {
// Count recursive invocations
count++;
// Two base cases
if (N == 0) {
return 0;
} else if (N == 1) {
return 1;
}
// One base case - multiple recursion
// Return Fibonacci number F[N]
else {
return recursiveFibonacci(N - 1) + recursiveFibonacci(N - 2);
}
}
public static void main(String[] arg) {
int N = 50;
count = 0; // Reset metrics
start = System.currentTimeMillis();
long FN = recursiveFibonacci(N);
System.out.println( "F(" + N + ") = " + FN );
System.out.println("recursion count: " + count
+ ", elapsed time: " + (System.currentTimeMillis() - start) + " ms");
}
}
Fibonacci.java
(version 1)recursiveFibonacci(…)
method. Note that this method has two base cases, one each for the two definitions F[0] = 0
and F[1] = 1
. Also note that the recursive case invokes recursiveFibonacci(…)
twice. This method demonstrates both multi-case recursion due to its two base cases and multiple recursion, due to it multiple recursive calls in one case.Fibonacci
class has two static variables used for tracking metrics. The count
long will be used to count the number of recursive calls or iterations in a method, and the start
long will hold the moment in time a method starts execution measured as milliseconds since 00:00 on January 1, 1970. The value of start
is subtracted from a second measurement of milliseconds after a method completes which estimates the method’s execution duration in milliseconds. The built-in static Java utility method System.currentTimeMillis()
returns the number of milliseconds that have elapsed since January 1, 1970 at 00:00. It is a convenient tool to use to calculate elapsed time. The first line in recursiveFibonacci(…)
increments the count
variable so it will hold the total number of times the method was invoked.main()
in Listing 12.3.6 resets both count
and start
and then it invokes recursiveFibonacci(…)
with an N
parameter of 50. It then prints the computed Fibonacci number, the recursion count, and it computes and prints the elapsed time.javac Fibonacci.java java Fibonacci F(50) = 12586269025 recursion count: 40730022147, elapsed time: 51248 ms
F[N]
we must compute all F[i]
for i
from 2 up to and including N
, so why not just perform that computation from the start. That is, when we want the value of F[N]
, let’s declare an array named F[]
of size N+1, initialize the base case values F[0] = 0
and F[1] = 1
, and then use iteration to compute F[2]
up to F[N]
, storing intermediate results in the F[]
array, and return F[N]
as the result?Fibonacci.java
program named iterativeFibonacci(…)
that implements this alternative version of the Fibonacci number calculation. To the main()
method we add a second test by calling our new method with an iteration count and a measurement of the elapsed time.// Fibonacci.java
public class Fibonacci {
public static long count = 0L; // Counter
public static long start = 0L; // Start time
public static long recursiveFibonacci( int N ) {
// ...
}
// Iterative Fibonacci number calculation using Dynamic Programming
public static long iterativeFibonacci(int N) {
long[] F = new long[N+1]; // Array for all intermediate values
F[0] = 0L; // Init first two by definition
F[1] = 1L;
for (int i=2; i<=N; i++) { // Calculate remaining
Fibonacci.count++; // Count iterations
F[i] = F[i-1] + F[i-2]; // Fibonacci number calculation
}
return F[N]; // Return F[N]
}
public static void main(String[] arg) {
int N = 50;
count = 0; // Reset metrics
start = System.currentTimeMillis();
long FN = recursiveFibonacci(N);
System.out.println( "F(" + N + ") = " + FN );
System.out.println("recursion count: " + count
+ ", elapsed time: " + (System.currentTimeMillis() - start) + " ms");
count = 0; // Reset metrics
start = System.currentTimeMillis();
FN = iterativeFibonacci(N);
System.out.println( "F(" + N + ") = " + FN );
System.out.println("iteration count: " + count
+ ", elapsed time: " + (System.currentTimeMillis() - start) + " ms");
}
}
Fibonacci.java
(version 2)javac Fibonacci.java java Fibonacci F(50) = 12586269025 recursion count: 40730022147, elapsed time: 51264 ms F(50) = 12586269025 iteration count: 49, elapsed time: 0 ms
iterativeFibonacci(50)
method is less that 1 millisecond with an iteration count of 49. That is much more efficient than the recursive method, which takes more than 51 seconds and 40 billion recursions to complete.en.wikipedia.org/wiki/Factorial
en.wikipedia.org/wiki/Euclidean_algorithm
en.wikipedia.org/wiki/Greatest_common_divisor